equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
O potencial escalar magnético, ψ, é uma quantidade no eletromagnetismo clássico análoga ao potencial elétrico. É usado para especificar o campo magnético H [en] nos casos em que não há correntes livres [en], de maneira análoga ao uso do potencial elétrico para determinar o campo elétrico na eletrostática. Um uso importante de ψ é determinar o campo magnético devido a ímãs permanentes quando sua magnetização [en] é conhecida. O potencial é válido em qualquer região com densidade de corrente zero, portanto, se as correntes estiverem confinadas a fios ou superfícies, soluções fragmentadas podem ser unidas para fornecer uma descrição do campo magnético em todos os pontos do espaço.
Potencial escalar magnético
O potencial escalar é uma quantidade útil para descrever o campo magnético, especialmente para ímãs permanentes.
Onde não há corrente livre,
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
então, se isso ocorrer em um domínio simplesmente conexo, podemos definir um potencial escalar magnético, ψ, como[1]
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
As dimensões de ψ em unidades de base do S.I. são .
Usando a definição de H:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
segue que
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Aqui, ∇ ⋅ M atua como a fonte do campo magnético, assim como ∇ ⋅ P atua como a fonte do campo elétrico. Analogamente à carga elétrica ligada, a quantidade
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
é chamada de densidade de carga magnética ligada. Cargas magnéticas nunca ocorrem isoladas como monopolos magnéticos, mas apenas dentro de dipolos e em ímãs com uma soma total de carga magnética de zero. A energia de uma carga magnética localizada qm em um potencial escalar magnético é
- ,
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
e de uma distribuição de densidade de carga magnética ρm no espaço
- ,
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde µ0 é a permeabilidade do vácuo. Isso é análogo à energia de uma carga elétrica q em um potencial elétrico .
Se houver corrente livre, pode-se subtrair as contribuições de corrente livre pela lei de Biot – Savart a partir do campo magnético total e resolver o restante com o método do potencial escalar.
Ondas eletromagnéticas
As ondas eletromagnéticas primeiramente foram previstas teoricamente por James Clerk Maxwell e depois confirmadas experimentalmente por Heinrich Hertz. Maxwell notou as ondas a partir de equações de electricidade e magnetismo, revelando sua natureza e sua simetria. Faraday mostrou que um campo magnético variável no tempo gera um campo eléctrico. Maxwell mostrou que um campo eléctrico variável com o tempo gera um campo magnético, com isso há uma autossustentação entre os campos eléctrico e magnético. Em seu trabalho de 1862, Maxwell escreveu:
"A velocidade das ondas transversais em nosso meio hipotético, calculada a partir dos experimentos electromagnéticos dos Srs. Kohrausch e Weber, concorda tão exactamente com a velocidade da luz, calculada pelos experimentos óticos do Sr. Fizeau, que é difícil evitar a inferência de que a luz consiste nas ondulações transversais do mesmo meio que é a causa dos fenômenos eléctricos e magnéticos."[carece de fontes]
Ondas harmônicas
Uma onda harmônica é uma onda com a forma de uma função senoidal, como na figura, no caso de uma onda que se desloca no sentido positivo do eixo dos .
A distância entre dois pontos consecutivos onde o campo e a sua derivada têm o mesmo valor, é designada por comprimento de onda (por exemplo, a distância entre dois máximos ou mínimos consecutivos). O valor máximo do módulo do campo, , é a sua amplitude.
O tempo que a onda demora a percorrer um comprimento de onda designa-se por {período}, .
O inverso do período é a frequência , que indica o número de comprimentos de onda que passam por um ponto, por unidade de tempo. No sistema SI a unidade da frequência é o hertz, representado pelo símbolo Hz, equivalente a .
No caso de uma onda eletromagnética no vácuo, a velocidade de propagação é que deverá verificar a relação:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
A equação da função representada na figura acima é:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde a constante é a fase inicial. Essa função representa a forma da onda num instante inicial, que podemos admitir .
Para obter a função de onda num instante diferente, teremos que substituir por , já que a onda se propaga no sentido positivo do eixo dos , com velocidade .
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
usando a relação entre a velocidade e o período, podemos escrever:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Se substituirmos , obteremos a equação que descreve o campo elétrico na origem, em função do tempo:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
assim, o campo na origem é uma função sinusoidal com período e amplitude . O campo em outros pontos tem exatamente a mesma forma sinusoidal, mas com diferentes valores da fase.[4]
Propriedades
Os campos eléctrico e magnético obedecem aos princípios da superposição de ondas, de modo que seus vectores se cruzam e criam os fenômenos da refracção e da difração.[carece de fontes] Uma onda eletromagnética pode interagir com a matéria e, em particular, perturbar átomos e moléculas que as absorvem, podendo os mesmos emitir ondas em outra parte do espectro.
Como qualquer fenômeno ondulatório, as ondas eletromagnéticas podem interferir entre si. Sendo a luz uma oscilação, ela não é afetada pela estática eléctrica ou por campos magnéticos de uma outra onda eletromagnética no vácuo. Em um meio não linear, como um cristal, por exemplo, interferências podem acontecer e causar o efeito Faraday, em que a onda pode ser dividida em duas partes com velocidades diferentes.[carece de fontes]
Na refracção, uma onda, transitando de um meio para outro de densidade diferente, tem alteradas sua velocidade e sua direcção (caso esta não seja perpendicular à superfície) ao entrar no novo meio. A relação entre os índices de refracção dos dois meios determina a escala de refração medida pela lei de Snell:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Nesta equação, i é o ângulo de incidência, N1 é o índice de refração do meio 1, r é o ângulo de refração, e N2 é o índice de refração do meio 2.
A luz se dispersa em um espectro visível porque é reflectida por um prisma, devido ao fenômeno da refração. As características das ondas eletromagnéticas demonstram as propriedades de partículas e da onda ao mesmo tempo, e se destacam mais quando a onda é mais prolongada.
Modelo de onda eletromagnética
Um importante aspecto da natureza da luz é a frequência uma onda, sua taxa de oscilação. É medida em hertz, a unidade SIU de frequência, na qual um hertz (1,00 Hz) é igual a uma oscilação por segundo. A luz normalmente tem um espectro de frequências que, somadas, juntos formam a onda resultante. Diferentes frequências formam diferentes ângulos de refração. Uma onda consiste nos sucessivos baixos e altos, e a distância entre dois pontos altos ou baixos é chamado de comprimento de onda. Ondas eletromagnéticas variam de acordo com o tamanho, de ondas de tamanhos de prédios a ondas gama pequenas menores que um núcleo atômico. A frequência é inversamente proporcional ao comprimento da onda, de acordo com a equação:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
.
Nesta equação, v é a velocidade, λ (lambda) é o comprimento de onda, e f é a frequência da onda.
Na passagem de um meio material para outro, a velocidade da onda muda, mas a frequência permanece constante. A interferência acontece quando duas ou mais ondas resultam em um novo padrão de onda. Se os campos tiverem as componentes nas mesmas direções, uma onda "coopera" com a outra (interferência construtiva); entretanto, se estiverem em posições opostas, pode haver uma interferência destrutiva.
Modelo de partículas
Um feixe luminoso é composto por pacotes discretos de energia, caracterizados por consistirem em partículas denominadas fotões (português europeu) ou fótons (português brasileiro). A frequência da onda é proporcional à magnitude da energia da partícula. Como os fótons são emitidos e absorvidos por partículas, eles actuam como transportadores de energia. A energia de um fóton é calculada pela equação de Planck-Einstein:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
.
Nesta equação, E é a energia, h é a constante de Planck, e f é a frequência.
Se um fóton for absorvido por um átomo, ele excita um electrão (português europeu) ou elétron (português brasileiro), elevando-o a um alto nível de energia. Se o nível de energia é suficiente, ele pula para outro nível maior de energia, podendo escapar da atração do núcleo e ser liberado em um processo conhecido como fotoionização. Um elétron que descer ao nível de energia menor emite um fóton de luz igual a diferença de energia. Como os níveis de energia em um átomo são discretos, cada elemento tem suas próprias características de emissão e absorção.[care
Comentários
Postar um comentário